Hereditary multiple exostoses and heparan sulfate polymerization.
نویسندگان
چکیده
Hereditary multiple exostoses (HME, OMIM 133700, 133701) results from mutations in EXT1 and EXT2, genes encoding the copolymerase responsible for heparan sulfate (HS) biosynthesis. Members of this multigene family share the ability to transfer N-acetylglucosamine to a variety of oligosaccharide acceptors. EXT1 and EXT2 encode the copolymerase, whereas the roles of the other EXT family members (EXTL1, L2, and L3) are less clearly defined. Here, we provide an overview of HME, the EXT family of proteins, and possible models for the relationship of altered HS biosynthesis to the ectopic bone growth characteristic of the disease.
منابع مشابه
Mice deficient in Ext2 lack heparan sulfate and develop exostoses.
Hereditary multiple exostoses (HME) is a genetically heterogeneous human disease characterized by the development of bony outgrowths near the ends of long bones. HME results from mutations in EXT1 and EXT2, genes that encode glycosyltransferases that synthesize heparan sulfate chains. To study the relationship of the disease to mutations in these genes, we generated Ext2-null mice by gene targe...
متن کاملGlycosaminoglycans in the blood of hereditary multiple exostoses patients: Half reduction of heparan sulfate to chondroitin sulfate ratio and the possible diagnostic application.
Hereditary multiple exostoses (HME) is an autosomal dominant skeletal disorder with wide variation in clinical phenotype and is caused by heterogeneous germline mutations in two of the Ext genes, EXT-1 and EXT-2, which encode ubiquitously expressed glycosyltransferases involved in the polymerization of heparan sulfate (HS) chains. To examine whether the Ext mutation could affect HS structures a...
متن کاملLoss of Function in Heparan Sulfate Elongation Genes EXT1 and EXT 2 Results in Improved Nitric Oxide Bioavailability and Endothelial Function
BACKGROUND Heparanase is the major enzyme involved in degradation of endothelial heparan sulfates, which is associated with impaired endothelial nitric oxide synthesis. However, the effect of heparan sulfate chain length in relation to endothelial function and nitric oxide availability has never been investigated. We studied the effect of heterozygous mutations in heparan sulfate elongation gen...
متن کاملNovel EXT1 mutation identified in a pedigree with hereditary multiple exostoses.
Hereditary multiple exostoses (HME) is an autosomal dominant bone disorder characterized by the presence of multiple benign cartilage-capped tumors. EXT1 located on chromosome 8q23-q24 and EXT2 located on 11p11-p12 are the main disease-causing genes which are responsible for ~90% of HME cases. Mutations of EXT1 or EXT2 result in insufficient heparan sulfate biosynthesis, which facilitates chond...
متن کاملAbrogation of heparan sulfate synthesis in Drosophila disrupts the Wingless, Hedgehog and Decapentaplegic signaling pathways.
Studies in Drosophila and vertebrate systems have demonstrated that heparan sulfate proteoglycans (HSPGs) play crucial roles in modulating growth factor signaling. We have isolated mutations in sister of tout velu (sotv), a gene that encodes a co-polymerase that synthesizes HSPG glycosaminoglycan (GAG) chains. Our phenotypic and biochemical analyses reveal that HS levels are dramatically reduce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochimica et biophysica acta
دوره 1573 3 شماره
صفحات -
تاریخ انتشار 2002